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Non-linear oscillations of a 2r~-periodic Hamiltonian system with one degree of freedom are considered. It is assumed that the 
origin of coordinates is an equilibrium position, the linearized system is assumed to be stable, its characteristic exponents -+iv 
are pure imaginary, and the value of 4v is close to an integer. When the methods of classical perturbation theory are used, the 
investigation reduces to an analysis of a model system which can be described by the typical Hamiltonian of problems on the 
motion of Hamiltonian systems with one degree of freedom in the case of fourth-order resonance. The system is analysed in 
detail. The results for the model system are applied to the total system using Poincar¢'s theory of periodic motion and the KAM- 
theory. The existence, number and stability of 8n-periodic motions of the initial system are investigated. Trajectories of motion 
which start in a fairly small neighbourhood of the origin of coordinates are bounded. An estimate of the size of that neighbourhood 
is given. The examples considered are of a point mass above a curve in the shape of an ellipse which collides with the curve, and 
plane non-linear oscillations of a satellite in an elliptical orbit in the case of fourth-order resonance. © 1999 Elsevier Science 
Ltd. All rights reserved. 

1. S T A T E M E N T  O F  T H E  P R O B L E M .  
T R A N S F O R M A T I O N  O F  T H E  H A M I L T O N I A N  

We will consider  the mot ion  of  a system with one degree  of  f r eedom described by the Hami l ton ian  func- 
t ion H(x, y, t) (x is the coord ina te  and y is the m o m e n t u m ) .  Le t  the origin of  coordina tes  x = y = 0 
be  an equi l ibr ium posi t ion of  the system, and let the funct ion H be  analytic in the ne ighbourhood  of  
x = y = 0 and  2rr-periodic with respect  to t. We will write H in the fo rm 

H = H2 + H3 + H4 +..- (1.1) 

where  Hk(X, y, t) is a kth degree  polynomial  in x and y. 
Suppose  the cor responding  l inearized system is Lyapunov  stable and its characteris t ic  exponents  

__. iv are  pure  imaginary.  We shall assume that  the system has no resonances  up to the third o rder  
inclusive, so tha t  the number s  2v and 3v are not  integers. 

I f  there  is four th-order  resonance  (if 4v is an integer),  the non-l inear  terms in the equat ions of  mot ion  
will e i ther  p rese rve  the stability of  the point  x = y = 0 or  dest roy it [1]. 

O u r  a im here  is to invest igate non- l inear  oscillations of  the system in the nea r - resonance  case, when  
the n u m b e r  4v is close to the integer  N. We examine the existence, n u m b e r  and stability of  8r~-periodic 
mot ions  of  the system and we show that  its trajectories of  motion, starting in a fairly small ne ighbourhood 
o f  the origin, are  bounded .  

We first m a k e  a n u m b e r  of  canonical  r ep lacements  of  variables,  t ransforming the Hami l t on i an  (1.1) 
to a fo rm tha t  is typical for  the resonance  case considered here  [1]. First, using the real  r ep l acemen t  
x, y ~ q,_p, which is a 27t-periodic with respect  to t, we can reduce  the funct ion H 2 to no rma l  fo rm 
v(q 2 + pZ)/2, discard th i rd-degree  terms,  and simplify the set o f  four th -degree  te rms  by leaving only 
r e sonance  t e rms  in it. Assuming  then  that  q = ~V(2R) sin 0 ,p  = eV(2R) cos 0 (0 < e ,~ 1), we will write 
the Hami l ton ian ,  normal ized  up  to four th-degree  te rms inclusive, in the fo rm 

K = vR + ~2[c + a sin(40 - Nt) + b cos(40 - Nt)]R 2 + O(E 3) (1.2) 

where  a, b and c are  constants .  We shall assume that  c # 0 and a 2 + b 2 ~ O. 
Le t  4v = N + 4e2Z. We will m a k e  the r ep lacemen t  of  variables 0, R ---> cp, r using the fo rmulae  
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O= Nt/4+O, +o[(l+t~)g/8+9], R=~r 

O = sign c, ~ = (a 2 + b2) -~j, sin 40, = a~i, cos 40, = b8 

and introduce the new independent variable x = e2t. The final form of the Hamiltonian function will 
be 

F = 7o(9,r)+eYl(9,r,x,e) (1.3) 

where 

70 =l.tr +(x -c°s49)  r2, P'=O"X,, x=[C[8 (1.4) 

The function ~/1 is a 2n-periodic in tp and 8ne2-periodic in x, and in the region 0 < r ~ 1 it is analytic 
with respect to all its variables. 

We then assume that × # 1. The critical case × = 1 with exact resonance (ix = 0) was studied in [2]. 

2. P H A S E  P O R T R A I T S  OF THE M O D E L  SYSTEM 

We will first consider the motions of a system with truncated (model) Hamiltonian (1.4), obtained 
from the total Hamiltonian (1.3) by discarding terms of order e and above. The equations of motion 
corresponding to (1.4) have the form 

and the relation 

dr/dx = - 4 r  2 sin 49, dg/d,c = I.t + 2r(x - cos 49) (2.1) 

70(9, r) = h = const (2.2) 

is their first integral. 
We will indicate the equilibrium positions of system (2.1) and what type of stability they exhibit. 

The equilibrium position r = 0 exists for any values of the parameters K and ~t; if ix = 0, it is stable for 
× > 1 and unstable for 0 < × < 1, but if ~ # 0, it is a stable equilibrium position for any values of 
(0 < e ~ 1). 

The other equilibrium positions r = r,, ~0 = ~, of system (2.1) are found from the relations 

sin 4 9 ,  = 0. ~t + 2 r , ( x -  cos 4 9 , )  = 0 (2.3) 

Equation (2.3) has no solutions in the region × > 1, ~t > 0. 
In the regions 0 < × < 1, ~t > 0 and 0 < × < 1, la < 0, system (2.3) has four solutions: in the former, 

its solutions are r. = ~t/2(1 - ×)), ~. = 0, 1r/2, n, 3n/2, and in the latter, - r .  = I ix ]/(2(1 + ×)), ~. = n/4, 
3n/4, 5~/4, 7n/4. The corresponding equilibrium positions of system (2.1) are unstable. 

In the region × > 1, ~t < 0, system (2.1) has eight equilibrium positions r. = I ix ]1/2(× - 1)), ~o. = 0, 
~/2, n, 3~/2, and r. = ] ~t 12(× + 1)), ~o. = 0, n/4, 3n/4, 5n/4, 7n/4 of which the first four are stable, and 
the rest unstable. 

The phase portraits of system (2.1) in the plane of variables u = xf~r cosh0, v = ~ s i n 9  are shown 
for0  < × < 1,~t = 0 ( a ) ;×  > 1,~ = 0 (b) ;0  < × < 1, ~t > 0 (c);× > 1, l.t > 0 ( d ) ; 0  < × < 1,1a < 0(e);  
× > 1, ~ < 0 (f) in Fig. 1. They are symmetrical about the coordinate axes and their bisectors. 

When ~ = 0, the origin of coordinates, which is a complex singular point of the system, is stable when 
× > 1 and unstable when 0 < × < 1. 

The stable equilibrium positions of system (2.1) for ix # 0 in Fig. I are represented by "central" singular 
points and the unstable positions by saddle points. The unstable singular points of the system are 
connected by separatrices which separate the regions in which the trajectories of the system behave 
differently. 

It will be assumed below that ~t ~ 0. We will describe the motion of the model system for all possible 
values of the parameters ix, × and h, using the notation h+ = ~t2/(4(1 -+ ×)). 

Suppose 0 < × < 1, ~ > 0 (Fig. lc). The value h = 0 of the "energy" constant corresponds to a stable 
equilibrium position, the origin of coordinates, and the value h = h_ corresponds to unstable equilibrium 
positions and the separatrices. Taking ~ as an arbitrary fixed quantity (~ > 0) we pick out three regions 
with boundaries (×, h) and h = 0 in the (x, h) and h = h plane (Fig. 2a). The curve h = h in Fig. 2(a) 



Non-linear oscillations of a Hamiltonian system 885 

Fig. 1. 
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is depicted by the solid line. If h < h_ (in Fig. 2a, regions i and 2 and the part of the straight line h = 0 
for which 0 < × < 1), four trajectories correspond to each value of the parameters × and h in Fig. 2c--  
unclosed curves intersecting the coordinate axes. In addition, one of the oscillations in the 
neighbourhood of the origin of coordinates corresponds to each point of region 2 (0 < h < h_). (For 
h > h_ (region 3 in Fig. 2a) four unclosed trajectories intersecting the bisectors of the angles between 
the axes correspond to each value of × and h 

If 0 < × < 1, ~t < 0 (Fig. le), then, similarly, we can divide the (×, h) plane into three regions (Fig. 
2b) with boundaries h = 0 and h = -h÷, corresponding to a stable equilibrium position--the origin of 
coordinates, and unstable equilibrium positions; motion along the separatrices also corresponds to points 
of the curve h = --h+. In region 1 (h < -h÷) we have motion along unclosed curves intersecting the 
coordinate axes and for h > -h+ (regions 2, 3 and the part of the straight line h = 0 for which 0 < × 
< 1), we have motion along unclosed curves intersecting the bisectors of the angles between the axes; 
moreover, an oscillation in the neighbourhood of the origin of coordinates corresponds to each point 
of region 2 (-h+ < h < 0). 

If× > 1, Ix < 0 (Fig. If), the boundaries of the regions where system (2.1) behaves differently in the 
plane of parameters ×, h are the straight line h = 0, corresponding to the origin of coordinates---a stable 
equilibrium position, and the curves h = h_ and h = -h+, corresponding to stable (r. = I Ix I/(2(× - 1)) 
and unstable (r. = I I~ I/(2(× + 1)) equilibrium positions of the system (curves a and 13 respectively in 
Fig. 2c). The points on curve 13 also correspond to motion along the separatrices. For h < h_ (region 
1 in Fig. 2c) motion is impossible. Four oscillation modes of the system in the neighbourhood of the 
stable equilibrium positions for which r. = I ~t I/(2(× - 1)) correspond to each point of region 2 (h_ < 
h < -h+) in Fig. 2c. For values of× and h in region 3 (--h+ < h < 0) we have either an oscillation near 
the origin of one of the rotations---the closed trajectories in Fig. lf, which include all the singular points 
of the system. Apart from a stable equilibriumwthe origin of coordinates--the value h = 0 corresponds 
to one of the rotations. One rotation corresponds to each point of region 4 (h > 0) in Fig. 2. 

Finally, if× > 1, IX > 0 (Fig. ld) forh < 0 motion is impossible, forh = Owe have stable equilibrium-- 
the origin of coordinates, and for h > 0 there are oscillations in the neighbourhood of this equilibrium. 
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3. A N A L Y S I S  OF T H E  M O D E L  S Y S T E M  

Integration. Using integral (2.2), we eliminate ~ from the first equation of system (2.1). The equation 
for r will have the form 

dr/ F'f~=z,'4dx, F( r )=r4- ( l . t r+xr2-h)  2 (3.1) 

The upper and lower signs in (3.1) correspond to motion in the sectors nk/2 < q~ < n(2k + 1)/4 and 
n(2k + 1)/4 < <p < n(k + 1)/2 (k = 0, 1, 2, 3) of decrease and increase of the variable r respectively. 
The roots of the polynomial F(r) have the form 

ft,2 = g + #~2 _ 4h(I - x) -p. + 41 x2 + 4h(1 + ×) (3.2) 
2(1 - x )  ' r3'4 = 2(1 + ~) 

We will give the results of integrating Eq. (3.1) on all bounded trajectories of system (2.1). Knowing 
r(x), the dependence ¢p(t) on these trajectories can be obtained from relation (2.2). 

In regions of oscillations of the system in the neighbourhood of the origin of coordinates (Fig. 
lc-f)  and in the region of rotations for × > 1, tt < 0 (Fig. lf), all the roots of the polynomial F(r) are 
real. 

If 0 < × < 1, la > 0 (Fig. lc), in the region of oscillations (0 < h < h_) we have r4 < r3 ~< r ~< r2 < 
rt. Putting r(0) = r3, from (3.1) we have [3] 

r('~) = t~(r2 -r4)-r4(r2 - r3)sn2 u 
(r2 _ r4)_(r2 _ r3)sn2 u (3.3) 

I f0  < × < 1, ~t < 0 (Fig. le), in the region of oscillations (-h+ < h < 0) we have r2 < rl ~< r ~< r4 < 
r3 and from (3.1) we obtain 

In (3.3) and (3.4) 

r(x)= -( 4-r2)_(r4_rl)sn2u, r ( 0 ) = r  I (3.4) 

and the modulus k of the elliptic sine and the oscillation frequency co are given by the relations 

(3.5) 

where K(k) is the complete elliptic integral of the first kind. 
If × > 1, ~t < 0 (Fig. lf), one oscillation in the neighbourhood r = 0 and one rotation correspond to 

each point (×, h) in the region -h+ < h < 0. In this region we have rl < r4 < r3 < r2. On the trajectory 
corresponding to the oscillations (rl ~< r <~ r4), from (3.1) we have 

,. - , , )  + , , ( , ,  - , , ) s n  2 . 
r(x)= ~ - ~ 2 - r ~ ( r - ~ - - _ r t - ~ u ,  r (O)=r  I (3.7) 

and on the trajectory corresponding to the rotation (r3 ~< r ~< r2) 

,,(r2 - , , )  - , , ( ,2 - , , ) s .  2 . 
rCx)= (r2_r4)_(r2_r3)sn2u ' rCO)=r3 (3.8) 

Here  too we have used notation (3.5), and the modulus k of the elliptic sine and frequency co of  
oscillation or rotation have the form (3.6). 

For the trajectory corresponding to rotation at h = 0, Eq. (3.1) is integrated in terms of elementary 
functions. From (3.1) and (2.2) we have 

L(r3- rtXr4 r2)] ' ~ =  4K(k) 
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r(x) = x + c o s  4~J-~'c' tp(x) = 

On trajectories of the system corresponding to rotations for h > 0 we have r3 ~< r ~< r2; the dependence 
r(x) is given by relation (3.8), and the modulus of the elliptic function and rotation frequency are given 
by formulae (3.6). 

If × > 1, ix > 0 (Fig. ld), for oscillations of the system near the origin of coordinates we have rl < 
r4 < r3 ~< r ~< r2; the dependence r(x) on these trajectories is given by relation (3.8), and the modulus 
of  the elliptic function and frequency is given by formulae (3.6). 

We will now consider the region of oscillations of the system in the neighbourhood of stable 
equilibrium positions for which r. = I ix t/(2(× - 1) (the case × > 1, Ix < 0, Fig. l(f), h_ < h < -h+). In 
this region, rl and rE are real, and r3 and r4 are complex-conjugates. On trajectories of the given region 
rl <~ r <- r2, and the dependence r(x) is given by the relation [3] 

r(Z) = qr2 +Prl -(qr2 - Prz)cnu r(O) = rl, u = 4~/~1:  (3.9) 
q+ p + ( p - q ) c n u  ' 

p 2 = ( m _ r 2 )  2 + n  2, q 2 = ( m _ r l )  2 + n  2 

m = n  
r)] s 

t n ~  
2(~+ 1) 2(x+ 1) 

In (3.9) k and co have the form 

k = l[la.2 + 4h(x- 1).1 ~j 2"~'~ [.~'j (3.10) 
2lhl j ,  co= K ( k )  " 

We will now give the results of integrating Eq. (3.1) on the bounded separatrices of the system. For 
0 < × < 1, ix > 0 (Fig. lc) on the separatrix joining unstable singular points, we have r3 ~< r < r2, where 
r3 = r$ = IX(~/2 - ~/(1 - ×))/(2(1 + ×)q(1 - ×)), rE = W(2(1 - ×)). From (3.1) we have [3] 

. 0  +e2°) 
r(x) = 2(1- ×)(1 + e2U)+ 42 - x)e u' r(0)= r3*, u = (3.11) 

For a bounded separatrix for 0 < × < 1, ix < 0 (Fig. le)  we have r I ~< r < r3. The dependence r 1 = 

r$, r3 = l ix I/(2(1 + ×)) for this trajectory is obtained from the relation for r(x) in (3.11), and the quantity 
r~' is obtained from r$ by replacing Ix by I IX I and × by -×. 

Finally, if × > 1, IX < 0 (Fig. if) we have rl ~< r < r3 (rl = r~,  r 3 = I IX I /(2(  ~ + 1)))  for the inner and 
r 3 < r ~< r 2 ( r  2 ---- r~  = [ ix I (~/(2) + ~/(× + 17(2(× - 1)~/(× + 1))) for the outer separatrix. The dependence 
r(x) on these is written in the form 

r(x)= 2(x + l)(l +e2U)+ 4 ~ ) e  u , u= 

where the upper and lower signs correspond to the inner separatrix (for which r(0) = r~) and the outer 
separatrix (for which r(0) = r~), respectively. 

Testing for non-degeneracy. We will verify that the condition for the Hamiltonian 70 to be non- 
degenerate in regions of oscillations and rotations of the system (Fig. 1c-f) is satisfied. 

We will introduce the action-angle variables I and w [4], putting 

1 
l(h) = ~ § r(cp, h)d9 (3.12) 

The integral in (3.12) is taken along the closed trajectory r = r(% h) defined by relation 
(2.2). The function h = h(/), the inverse of (3.12), is the Hamiltonian 70 written in action-angle 
variables. 
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Since d2h/dI 2 = o~doa/dh, the condition of non-degeneracy d2h/dI z ~ 0 reduces to the condition 
do~/dh ~ O. 

In the region of oscillations for 0 < × < 1, IX > 0 (Fig. lc) from (3.2) and (3.6) we have 

do) = ~{K(k)[ ×ltt2 + xs-4h(l-~'2)]  - 2l i2 dKIdk} (3.13) 

dh 2,~K2(k)s[i.i2 +4xh +s]~ 

Computer calculations showed that for each value of the parameter ix (ix > 0) in the plane of the 
parameters (× h) inside the given region of oscillations there is a curve h = h(×, ix) on which the 
expression in braces in (3.13) vanishes. The graph of this curve is represented qualitatively by the dashed 
line in Fig. 2(a). Above the curve dco/dh < 0 and below the curve dco/dh > O. 

Thus, almost everywhere in the given region of oscillations (apart from a set of zero measure) the 
non-degeneracy condition is satisfied. 

Similarly, inside the region of oscillations for 0 < × < 1, tx < 0 (Fig. le) from (3.2) and (3.6) 
we obtain an expression which is the same as (3.13) but with - Ihl in the numerator instead of h and 
-dK/dk instead of dK/dk, and inside the region of oscillations near stable equilibria for which r. = 
l la 1/(2(×-1)) (the case × > 1, IX < 0, Fig. If) from (3.2) and (3.10) we have 

dec Fxck)  2aK/dk] 
: -  K- TZTL,-Dx N NJ 

Since dK/dk > 0, we conclude that in the first of these cases do~ldh > 0, and in the second -doUdh 
< 0 for all the given values of IX, ×, h. Thus, the non-degeneracy condition holds everywhere in both 
regions. 

For oscillations of the system near the origin of coordinates for × > 1 and for rotations for × > 1, 
< 0 (Fig. ld, f) it is easy to test the non-degeneracy condition using the relation 

d2h 0) 3 a2yo / ~r 2 
dl 2 =~-~r (~lolar)3 dq)=--~S 2(~-c°s4(p)d- ~-~/-7-~r)3 ~ (3.14) 

obtained from (2.2) and (3.12). 
The numerator of the fraction in the integrand in (3.14) is positive for × > 1. For trajectories 

corresponding to oscillations near the origin of coordinates for × > 1, ix < 0 (Fig. lf), dcp < 0 and the 
denominator of the fraction in (3.14) is negative (~0/0r = d~/Ox < 0), since the angle cp is monotonely 
decreasing on those trajectories. Thus, dZh/dI 2 > 0, and the non-degeneracy condition holds. For 
trajectories corresponding to rotations of the system for × > 1, IX < 0 (Fig. 1£) or oscillations in the 
neighbourhood of the origin for × > 1, IX > 0 (Fig. ld) dcp > 0 and the denominator of the fraction in 
(3.14) is positive (the angle cp increases monotonely). Hence, d2h/dI 2 > 0 and the non-degeneracy 
condition holds. 

4. N O N - L I N E A R  OSCILLATIONS OF THE C O M P L E T E  SYSTEM 

We will now show how the results for the model system described by the Hamittonian Y0 can be applied 
to a complete system with Hamiltonian F (cf. 1.3)). 

According to Poincar6's theory of periodic motion [5], for sufficiently small values of ~ a unique 
solution of the complete system with is 8ne2-periodic in x and analytic with respect to e is generated 
from each position of equilibrium of the model system which does not coincide with the origin of 
coordinates, corresponding to motion of the initial system which is 8n-periodic with respect to x with 
Hamiltonian (1.1). 

The unstable equilibrium positions of system (2.1) correspond to unstable but periodic solutions of 
the complete system: this follows from the fact that the characteristic exponents of the corresponding 
linear equations of perturbed motion are continuous with respect to c. 

We will use the Arnol'd-Moser theorem [6, 7] to examine the stability of the periodic motions 
generated from stable equilibrium positions (× > 1, ix < 0, Fig. lf) of the model system. To obtain the 
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normal form of the Hamiltonian function of perturbed motion, we first normalize the Hamiltonian ]t0 
of the model system in the neighbourhood of these equilibria. Putting (p = q~. + ~, r = r. + rl (~p* = 0, 
n/2, n, 3n/2; r. = [ la 1/(2(×-1))), we can represent ]t0 in the form 

]'0 =]'~02) + y(03) + ]'(04) +... (4.1) 

]'(02) = 8 r 2 ~  2 + ( ~  - 1)1"12, ]'(03) = 16r,~2"q,  ]'(04) --- 8~21] 2 - ( 3 2 / 3 ) r 2 ~  4 

where the dots denote the set of terms of higher than the fourth power in ~ and ~. The replacement 
of variables ~ -- ~l/Ot, ~ = ~tlq 1, ot = 23/4~/(r.)(× - 1) -1/4 reduces the quadratic part ]t0 (E) t o  normal form 
o)(~12 + rh2)/2, co -- 2~/(2)1 Ix I(× - 1) -1/2. We then make a canonical Birkhoff transformation ~1, 111 ~ q,p 
which removes cubic terms in the Hamiltonian and simplifies terms of the fourth power. In the neigh- 
bourhood of the given equilibrium, the normal form of the Hamiltonian I0 will be 

lto(q2 + p2)+ lc(q2 + p2)2 + .... c = -2(x + 3) (4.2) Z 

We will now normalize the complete Hamiltonian F in the neighbourhood of the periodic solution 
of the complete system generated by the given stable equilibrium. The normalized Hamiltonian will 
have the form (4.2), where corrections of order a are made to the coefficients o and c. For sufficiently 
small values of a, by virtue of the inequality c < 0, the Hamiltonian F is non-degenerate in the 
neighbourhood of the periodic solution considered above. Hence, by the Arnol 'd-Moser theorem, it 
is Lyapunov stable. 

We will now show that motions of the complete system starting in a finite neighbourhood of the origin 
of coordinates are bounded, and estimate the size of that neighbourhood. 

At the end of Section 3 we showed that for all closed trajectories of the model system (2.1) 
(corresponding to oscillations and rotations) the condition for non-degeneracy of the Hamiltonian 10 
is satisfied. In particular, for cases 0 < × < 1, la > 0 (Fig. lc) and 0 < × < 1, ~t < 0 (Fig. le) this condition 
is satisfied, for example, by the trajectory corresponding to an oscillation in the neighbourhood of the 
origin of coordinates on which the maximum value of r is not greater than the value r~/2 and rT/2, 
respectively, where r~ and rl' are the minimum values of r on the corresponding separatrix defined at 
the beginning of Section 3. 

According to Moser's theorem concerning invariant curves [7], for sufficiently small values of e the 
mapping generated by motions of the complete system after period 8he 2 has an invariant curve close 
to the given trajectory. For all trajectories of the complete system which start inside this curve for cases 
0 < × < 1, ~t > 0 and 0 < × < 1, la < 0 respectively, we have 

1 r3. (1 + O(Iz)) and r('0 < I rl.(1 + O(~:)) /'(1;) < 

If × > 1, Ix < 0 (Fig. lf), then, as in Moser's theorem, we choose one of the invariant curves, close 
to a trajectory corresponding to rotation, say, on which the value of r is no greater than 2r~, where r~ 
is the maximum value of r on the outer separatrix (see Section 3). For all trajectories of the complete 
system which start inside the given invariant curve we have 

I r(x)I< 2r2(I + O(e)) (4.3) 

Finally, for the case × > 1, ~t > 0 (Fig. ld) we can estimate the size of the neighbourhood of the 
origin of coordinates beyond which trajectories which start inside that neighbourhood will not go, using, 
say, the inequality (4.3). 

5. E X A M P L E S  

We will give two examples to illustrate the results. 
1. Consider the motion of a point mass of mass m above a fixed absolutely smooth curve in the shape of an 

2 2 2 2 ellipse, given in a fixed system of coordinates O~rl by the equation ~ a- + (q-b) b- = 1 (the Orl axis is vertical). 
Moving in the plane O~rl, the point occasionally collides with the curve; the collision is assumed to be completely 
elastic and frictionless. 

There is a periodic motion of the point when its trajectory lies on the Orl axis, and as a result of colliding with 
an arc of the ellipse the .point at the origin of coordinates ~ = r I = 0 periodically jumps a height l; the period of 
this motion is equal to 2"4(2//g). The isoenergetic orbital stability of this motion has been investigated in [8]. 
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Suppose that in the perturbed motion immediately before the first and second collisions of the point we have 
= Ix, p~ = rn~l(2gl)y and ~ = /x l ,  p~ ffi m~/(2g/)yl, respectively (~ and p~ are the generalized coordinate and 

momentum). In [8] the investigation of the isoenergetic orbital stability of the given periodic motion of a point 
was reduced to the investigation of the stability of a fixed point x = y = 0 of the area-preserving mapping 

xl =Xl(X,Y), Yl =yl(x ,y)  (5.1) 

of the plane into itself. 
We showed, in particular, that on the straight line 13 = 0/4 in the plane of parameters ~t and 13 (ct = a2/b 2, 13 = 

l/b) (Fig. 3) there is fourth-order resonance; also, if 0 < a < 5 or a > 10 (which corresponds to the case x > 1 
here), there is orbital stability, and for 5 < a < 10 (when 0 ~< x < 1) the given periodic motion of the point is 
unstable [8]• At points c (5, 5/2) and d(10, 5/2)--the boundaries of the areas of stability and instability (corresponding 
to the critical value × = 1)--the vertical periodic motion of a point is respectively orbitally stable and unstable [2]. 

Suppose now that the value of 13/a is close to 1/4. Assuming 13/~t = 1/4 + nezxJ2, we make the replacement of 
variables x, y -~ q,, po, which brings the mapping (5.1) to normal form [8]; then, changing to variables q = e-lq,, 
p = e-lp,, we obtain this normalized mapping in the form 

ql = cos 2 ~ q  + sin 2ro~p + ~2 [IJ.~lq(q2 + p2) + tto3q(q2 _ 3p2)] + O(1~3) 

• 2 * 2 2 * 2 Pt = - s m 2 r o ~ q + e o s 2 ~ p + ~  [IJ.21P(q +P )+IX03P(P -3q2)]+O(~ 3) (5.2) 

_ 5 
7t = 2"~areco(l---~- ) t t~ l -~ - - - f f - ,  

The Hamilton function generating the mapping (5.2) after period 2n, can be written in "polar" coordinates 0, 
R(q = x/(2R) sin 0 ,p  = ~/(2R) cos 0) as 

, -  ~ 2  • 

= +g03cos(4O-t)]R +O(~ ) (5.3) m ~ - ~ [ t t 2 1  * 2 3 

We make the replacement of variables 0, R ~ <p, r described in Section 1, putting 0 = t/4 + <~[(1 + c~)~/8 + cp], 
R = 2n/lix*03[, cr = -sign IX21, and introduce the new independent variable x = e2t. The Hamiltonian (5.3) will take 
the form (1.3), (1.4), where IX = -sign Ix*21v × = I IX~I I/I IX~3 I. 

We will apply the results of Section 4 to the problem here. 
Apart from periodic motion of a point along the vertical Oll (orbitally stable at tx ~ 0), in this case there are 

still more periodic motions (with period T --- 8~1(21)/g), in the neighbourhood of the given vertical motion. They 
correspond to 8n-periodic motions of a system with Hamiltonian (5.3). As the analysis shows, T-periodic motions 
of a point can he of two types. Neglecting terms O(e2), the corresponding trajectories of the point have the form 
shown in Fig. 4. For motion of the first kind (Fig. 4a) the abscissae of the points of intersection of the trajectory 
of the point with the arc of the ellipse are equal to -A ,  0, A,  and for motion of the second kind, -A",/(2)/2, A ~/(2)/2, 
where A = 4c/~/(m'./[ix*031), and r. is the corresponding equilibrium value of the variable r of the model system. 

For points (ct, 13) lying in the neighbourhood of the straight line 13 = 0/4 (Fig. 3) in intervals 0 < ct < 5 and c~ 
> 10 (where × > 1), the only periodic motion of the point below that line (Ix > 0) is vertical; above that line (Ix < 
0), in the same ranges of variation of ct, there are another two T-periodic motions of the point--motions of the 
first and second types (Fig. 4). When 0 < ct < 5 the motion of the first type is unstable, and that of the second 
type is orbitally stable; for ct > 10, on the other hand, the motion of the first and second types is orbitally stable 
and unstable, respectively. 

In a small neighbourhood, above and below, the straight line 13 = 0/4 in the interval 5 < ct < 10 (where 
0 ~< × < 1) (IX < 0 and IX > 0, respectively), in addition to vertical periodic motion of the point, there is another 
T-periodic motion which is unstable. For points (ct, 13) lying above the straight line 13 = 0/4 for 5 < ct < 20/3 and 
below this line for 20/3 < ct < 10, this motion is of the first type, but for points (ct, 13) below the line 13 = ct/4 for 
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0 

Fig. 3. 
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5 < ct < 20/3 and above that line for 20/3 < ct < 10 it is of the second type. We have excluded from consideration 
the neighbourhood of the critical point (20/3, 5/3) of the straight line 13 = ct/4 (where × = 0). 

Any motions of a point which start in a sufficiently small neighbourhood of its vertical periodic motion remain 
bounded: it follows from the results of Section 4 that for these motions 

I ~,(t) I< 2 /~;-e(1  + O(~)) 

where p* --- r~' for the region 5 < ct < 10, 13 > ct/4; p* = r] for the region 5 < et < 10, 13 > et/4; p* = 4r~ in regions 
0 < ct < 5 and ¢t > 10 on both sides of the line 13 = ct/4. The quantities r/* (i = 1, 2, 3) were defined in the first 
part of Section 3. 

2. Consider plane non-linear oscillations of a satellite--a rigid body--about the centre of mass in an elliptical 
orbit described by the equation [9] 

(1 + ecos v) d~.~2 - 2esin V~v  + Otsin ~ cos v = 2esin v (5.4) 

where W is the angle between one of the principal central axes of the ellipsoid of inertia of the satellite, lying in 
the plane of the orbit, and the radius vector of its centre of mass, v is the true anomaly, e is the eccentricity of the 
orbit and ¢t is the inertial parameter (I ct I ~< 3). 

We will consider one of the regions in the plane of parameters e, ct (Fig. 5), where there is a unique 2r~-periodic 
solution ~¢ = W.(v) of Eq. (5.1) which is stable in the linear approximation (the characteristic exponents __.i~ of 
the corresponding linearized system are pure imaginary) and which transfers whene = 0 to the equilibrium position 
of a satellite in the orbital system of coordinates [10]. This region is bounded by the branching curve (issuing from 
the point (0, 1)), the curve ~. = 1/2 and the straight line e = 0 (Fig. 5). 

There is fourth-order resonance on the curve ~. = 3/4 which passes through the given region. On the part of the 
resonance curve depicted by the dashed line in Fig. 5, the solution ~¢.(v) is stable (here × > 1), while on the other 
part, depicted by the solid line, it is unstable (0 < × < 1); the boundary point of the regions of stability and instability 
x = 1 has coordinates (0.097; 0.85) [11]. 

We select part of the resonance curve near the boundary point on either side of this point and consider the 
existence and stability of 8n-periodic motions of the satellite for values of a and ct lying in a small neighbourhood 
of the given part of the curve 7~ = 3/4. Everywhere in this neighbourhood the coefficient c of the normal form of 
the Hamilton function is negative [11]; for points (e, ct) to the left and right of the resonance curve we have Z > 
0, la < 0 and Z < 0, la > 0, respectively (the notation for c, Z and ~ was introduced in Section 1). Thus (cf. Section 
4), for points (e, or) which are on either side of the resonance curve above its boundary point (where 0 < × < 1), 
there is unstable 8n-periodic motion of the satellite in the neighbourhood of its 2n-periodic motion, described by 
the solution ~ = W.(v). For points (e, ct) in the neighbourhood of the resonance curve where × > 1 (below the 
boundary point), there are two 8n-periodic motions to the left of this curve, one of which is stable and the other 
not; for points (e, ¢t) to the right of this part of the curve, there are no 8n-periodic motions of the satellite different 
from the given 2n-periodic motion. 
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